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Presentation Outline 
 Using benchmarks for radiation testing 
 Field-programmable gate array (FPGA) benchmark 
 Microprocessor software benchmark 
 Preliminary test results for the benchmark 
 Summary and future work 

April 1, 2015 SELSE Workshop 2 



Complexity of System Design Space 
 Viewing the system in terms of “hardware” and 

“software” is a coarse-grained analysis 
 Understanding the linkages among the quadrants is 

critical for development of a reliable, trusted system 
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Fault vs. Error 

 Fault: 
 Faults are underlying problems or defects in the hardware 
 Transient faults are ones that appear and disappear 

 Error: 
 An error is a manifestation of a fault at a particular scope (e.g., chip boundary) 
 A soft error is caused by a transient fault 

 Failure: 
 Error in outermost scope 

Copyright  2009 Emer and Mukherjee 
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Classification of Faults [1] 

Faults experienced by semiconductor devices fall into 
three main categories: 

 Permanent 
 Reflect irreversible physical changes 
 Example: Oxide wearout that causes a transistor malfunction 

 Intermittent 
 Occurs repeatedly at the same location 
 Tend to occur in bursts when the fault is activated 
 Can be removed with replacement of the offending circuit 
 Example: Partial oxide wearout 

 Transient 
 Occur because of temporary environmental conditions 
 Example: Radiation-induced bit flips 

[1]     C. Constantinescu, "Trends and challenges in VLSI circuit reliability," IEEE Micro, vol. 23, pp. 14-19, 2003. 
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Using Benchmarks for Testing 
 Benchmarks have been widely embraced  by many 

researchers. 
 Benchmarks allow designers to determine relative 

improvements caused by: 
 Processing technology 
 Architecture 
 Circuit design 
 Software 

 A number of communities use benchmarks: 
 Design for Test (DFT)  
 Automated Test Pattern Generation (ATPG) 
 Compiler 
 Supercomputing 
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Other Benchmarks in Use 
 Hardware benchmarks 

 ISCAS 85/89 
 ITC’99, and  
 IWLS 2005 

 Software benchmarks 
 Dhrystone/Whetstone 
 Linpack 
 Coremark 
 SPECint/fp 
 RODINIA 
 NAS 
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Benchmarks in High-Reliability Systems 
 Currently, there is no benchmark suite for  

reliability or radiation testing for either  
FPGAs or microprocessors 

 The current state of the art is to use: 
 Homemade, synthetic designs that represent worst-case 

scenarios, 
 Circuits from OpenCores, existing benchmarks, or Xilinx’s 

CoreGen Tool, or 
 Designs that have been used previously by the researchers. 

 Codes/circuits used are not guaranteed to be 
consistent among research groups 
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Advantages of Using Benchmarks for  
High-Reliability Systems 
 Assess relative reliability improvements between mitigated and 

unmitigated designs. 
 

 Compare mitigation methods for effectiveness, performance, 
area, and power. 
 

 Compare algorithms across architectures and process 
changes. 
 

 Assess architectural effects on reliability, such as using or not 
using caches. 
 

 Assess the effect of coding methods on reliability, such as 
iterative solvers. 
 

 Compare test methodologies across organizations, including 
both radiation testing and fault injection. 
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FPGA Benchmark 
 Using ITC’99 I99T for now 

 Reasonably sized set of circuits which are small enough for 
mitigation 

 Comes with existing input vectors 

 
 For testing we have been focusing on B13 

 Trying to correlate beam testing with fault injection data, so that 
we can test the entire suite using fault injection 
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Microprocessor Software Benchmark 
 AES-128 with NIST test vectors 
 Cache test with four memory test patterns 
 CoreMark with internal inputs 
 Matrix multiply 
 FFT 
 Hotspot 
 Quicksort  
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Neutron Beam Testing 
 Initial radiation tests were completed at the Los 

Alamos Neutron Science Center (LANSCE) in 
December 2014. 
 

 Both benchmarks were tested on a number of 
different architectures. 
 

 Dual purpose for the beam testing 
 Individual mitigation approaches were evaluated against 

unmitigated implementations 
 Collective assessment of the benchmark composition 
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Test Setup from LANSCE 
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Experiments at LANSCE Test 
Benchmark Org Component 

1 s/w¹ LANL 2 x TI MSP430F2619 

2 s/w¹ LANL 2 x TI MSP430FR5739 

3 s/w¹ LANL 2 x TI Tiva 

4 h/w¹ Madrid Xilinx Artix-7 

5 h/w¹ Torino Xilinx Virtex-5 

6 s/w¹ UFRGS 6 x Xilinx Zynq 

7 s/w¹ UFRGS Kaveri A10 Apu 

8 s/w¹ UFRGS Tesla K20 GPUs, Xeon Phi 

9 h/w¹ UFRGS Xilinx Virtex-5 

11 s/w¹ JPL Freescale P2020 

12 s/w² + h/w¹ BYU Xilinx Kintex-7 

13 s/w¹ BYU Xilinx Zynq 

14 custom² Vanderbilt 
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Microcontroller Results 
Code Tiva MSP430F2619 MSP430FR5739 

AES 0.30 
(0, 1.1) 

0.38 
(0.04, 1.37) 

0.85 
(0, 3.1) 

AES TMR 0.31 
(0, 1.1) 

3 
(1, 5) 

2 
(0, 7) 

Cache 75 ± 10 8 ± 2 10 
(6, 15) 

Cache TMR 0.27 
(0, 1.0) 

0.21 
(0, 0.76) 

2 
(0, 8) 

Coremark 0.75 
(0.15, 2.20) 

1.27 
(0.51, 2.61) N/A 

M x M 59 ± 13 4 
(2, 6) 

1 
(0, 4) 

M x M TMR 10 
(7, 14) 

0.27 
(0, 1.0) 

2 
(0, 8) 

Qsort 59 ± 13 3 
(2, 5) 

25 
(16, 38) 

Qsort TMR 0.34 
(0, 1.27) 

7 
(4, 10) 

2 
(0, 7) 

 All of these components are very 
small, which is why the FIT rate 
is small. 

 These results show that AES-128 
is naturally resistant to errors: 
very small amount of memory 
and processing. 

 Many similarities in results are 
due to forcing similar amount of 
memory. 

 These values are not normalized 
to the amount of work performed: 
 Cache test makes the MSP430F2619 

look like the most robust operation. 
 In reality, it is doing far less 

processing than the Tiva. 
 The slower processing in Coremark 

shows how the slower processing 
decreases resilience to errors. 
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NVIDIA K20 Results 
Code Config SDC FIT O’head 

M x M 

Unhard (4:63 ± 0:80)  x 102 1.0 

ECC 44:91 ±  9:94 1.01 

ABFT 8.34 ±  0.96 1.14 

FFT 

Unhard (2.88 ± 0:39)  x 103 1.0 

ECC (4.14 ±  0.88) x 102 1.5 

ABFT 8.34 ±  0.96 1.18 

Htspt 

Unhard (2.04 ± 0:31)  x 103 1.0 

ECC 18.16 ±  2.01 1.0 

Spatial 
DWC 3.26 ±  0.45 2.45 

Tempor
al DWC 2.45 ± 0.34 1.90 

 Increase in overhead for 
ECC is modest, but 
sensitivity to SEFIs 
increases. 
 ECC fails on multiple-bit 

upsets (MBUs) 
 

 For MxM ECC on GPUs 
has similar reliability 
improvement to LANL’s 
Trikaya, but with less 
overhead.  
 

 ABFT seems extremely 
efficient compared to 
other techniques. 
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Virtex-5 LX50T Results for B13 
Config SDC FIT O’head 
Unhard (2.10 ± 0:03)  x 103 1.0 
XTMR (1.72 ± 0:01)  x 103 4.56 
VERI-Place (1.34 ± 0:04)  x 102 4.56 

 B13 has been implemented using the Xilinx TMR tool and the 
POLITO’s software mitigation tool named VERI-Place. 
 No scrubbing during test 

 The X-TMR and VERI-Place implementation take the same 
amount of FPGA resources. 
 VERI-Place software hardens the circuit’s physical netlist by acting on the 

logic placement position.  
 The results report the SDCs normalized to the unhardened 

version ones, while the overhead represents the increase of the 
circuit area. 

 Focusing on validating the B13 results using fault emulation. 
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Using Fault Injection [1] 
 Can perform fault injection to trigger malicious 

hardware within the design under test (DUT) 
 May (or may not) be triggered by the test vector suite 

 FPGAs could accelerate this time-consuming process 
 

April 1, 2015 SELSE Workshop 
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Fault Simulation and Emulation Tools [1] 
 FPGAs as hardware accelerators 

 Provide additional computational capability 

 SLAAC1-V SEU Emulator 
 Los Alamos National Lab and Brigham Young University  
 One of the first fault emulation systems for FPGAs 

 FT-UNSHADES and FT-UNSHADES2  
 University of Sevilla 
 Allows for emulation of radiation-hardened by design ASICs  

on an FPGA  
 System is available for on-line research purposes (search for 

“FT-UNSHADES2” for contact info) 
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FT-UNSHADES Fault Emulation Tool 
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Limitations of Fault Injection [1] 
 Trade-off between 

accuracy and testing 
time 

 Effective sampling of 
the test space to detect  
(i.e., trigger) the 
malicious hardware 

 In the case of FT-
UNSHADES, the 
experimental setup is 
different 
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FT-UNSHADES Results 
Design and conditions Device Essential 

Bits 
Total Essential 

Bits 
B13_X30_plain  
(Polito generation) LX50T 322,399 11,006,638 

B13_X30_plain (Polito circuit) FX70T 327,850 18,936,096 
B13_X30_plain (FTU2 circuit) FX70T 333,525 18,936,096 
B13_X30_XTMR  
(Polito generation) LX50T 1,824,638 11,006,368 

B13_X30_XTMR  
(Polito circuit) FX70T 1,912,920 18,936,096 

B13_X30_XTMR  
(FTU2’s circuit) FX70T 1,922,272 18,936,096 

B13_X30_XTMR_veriplace_H LX50T 1,809,635 11,006,368 
B13_X30_XTMR_veriplace_L LX50T 1,809,635 11,006,368 
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Summary And Future Work 
 We have attempted to create a common benchmark 

for comparing results across architectures, process 
technology, and mitigation schemes. 
 Hardware: ITC’99 I99T 
 Software: AES, Cache, Coremark, FFT, Hotspot, M x M, Qsort 

 We have completed preliminary analysis of test 
results taken in Dec 2014 

 There is still work to do: 
 Is the software benchmark the right one?  Might look at different 

software and input vector sets 
 Complete fault injection of the hardware benchmark 
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